Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neuropharmacology ; 221: 109275, 2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-36195131

RESUMO

The lateral hypothalamus (LH) is an important brain region mediating sleep-wake behavior. Recent evidence has shown that astrocytes in central nervous system modulate the activity of adjacent neurons and participate in several physiological functions. However, the role of LH astrocytes in sleep-wake regulation remains unclear. Here, using synchronous recording of electroencephalogram/electromyogram in mice and calcium signals in LH astrocytes, we show that the activity of LH astrocytes is significantly increased during non-rapid eye movement (NREM) sleep-to-wake transitions and decreased during Wake-to-NREM sleep transitions. Chemogenetic activation of LH astrocytes potently promotes wakefulness and maintains long-term arousal, while chemogenetic inhibition of LH astrocytes decreases the total amount of wakefulness in mice. Moreover, by combining chemogenetics with fiber photometry, we show that activation of LH astrocytes significantly increases the calcium signals of adjacent neurons, especially among GABAergic neurons. Taken together, our results clearly illustrate that LH astrocytes are a key neural substrate regulating wakefulness and encode this behavior through surrounding GABAergic neurons. Our findings raise the possibility that overactivity of LH astrocytes may be an underlying mechanism of clinical sleep disorders.


Assuntos
Região Hipotalâmica Lateral , Vigília , Animais , Camundongos , Vigília/fisiologia , Região Hipotalâmica Lateral/fisiologia , Astrócitos , Cálcio , Sono/fisiologia , Neurônios GABAérgicos/fisiologia , Hipotálamo
2.
Front Neurosci ; 16: 850193, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35527820

RESUMO

In response to external threatening signals, animals evolve a series of defensive behaviors that depend on heightened arousal. It is believed that arousal and defensive behaviors are coordinately regulated by specific neurocircuits in the central nervous system. The ventral tegmental area (VTA) is a key structure located in the ventral midbrain of mice. The activity of VTA glutamatergic neurons has recently been shown to be closely related to sleep-wake behavior. However, the specific role of VTA glutamatergic neurons in sleep-wake regulation, associated physiological functions, and underlying neural circuits remain unclear. In the current study, using an optogenetic approach and synchronous polysomnographic recording, we demonstrated that selective activation of VTA glutamatergic neurons induced immediate transition from sleep to wakefulness and obviously increased the amount of wakefulness in mice. Furthermore, optogenetic activation of VTA glutamatergic neurons induced multiple defensive behaviors, including burrowing, fleeing, avoidance and hiding. Finally, viral-mediated anterograde activation revealed that projections from the VTA to the central nucleus of the amygdala (CeA) mediated the wake- and defense-promoting effects of VTA glutamatergic neurons. Collectively, our results illustrate that the glutamatergic VTA is a key neural substrate regulating wakefulness and defensive behaviors that controls these behaviors through its projection into the CeA. We further discuss the possibility that the glutamatergic VTA-CeA pathway may be involved in psychiatric diseases featuring with excessive defense.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...